Spatial patterns of Ca2+ signals define intracellular distribution of a signaling by Ca2+/Calmodulin-dependent protein kinase II.
نویسندگان
چکیده
Ca2+ plays a central role in cell signaling, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+ actions. The spatial distribution of intracellular Ca2+ signaling is not homogenous, rather it is dynamically organized, and it has been speculated that spatial patterns of Ca2+ signals may function as a form of cellular information transmitted to downstream molecules. To address this issue, we studied the intracellular distributions of the signalings by CaMKII and Ca2+ in the same astrocytes. The former was visualized by monitoring site-specific phosphorylation of a cytoskeletal protein vimentin, using site- and phosphorylation-specific antibodies, while the latter was examined by fura-2-based Ca2+ microscopy. Local Ca2+ signals induced vimentin phosphorylation by CaMKII localized in the same area. On the other hand, Ca2+ waves in astrocytes induced global phosphorylation of vimentin by CaMKII. A small population of vimentin filaments highly phosphorylated by CaMKII underwent structural alteration into short filaments at electron microscopic level. These results indicate that CaMKII transmits spatial patterns of Ca2+ signals to vimentin as cellular information. The possibility is discussed that spatial patterns of vimentin phosphorylation may be important for intracellular organization of vimentin filament networks.
منابع مشابه
P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملBiophysical attributes that affect CaMKII activation deduced with a novel spatial stochastic simulation approach
Calcium/calmodulin-dependent protein kinase II (CaMKII) holoenzymes play a critical role in decoding Ca2+ signals in neurons. Understanding how this occurs has been the focus of numerous studies including many that use models. However, CaMKII is notoriously difficult to simulate in detail because of its multi-subunit nature, which causes a combinatorial explosion in the number of species that m...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملIntracellular Ca2+ regulates free-running circadian clock oscillation in vivo.
Although circadian oscillation in dynamics of intracellular Ca2+ signals has been observed in both plant and animal cells, it has remained unknown whether Ca2+ signals play an in vivo role in cellular oscillation itself. To address this question, we modified the dynamics of intracellular Ca2+ signals in circadian pacemaker neurons in vivo by targeted expression of varying doses of a Ca2+ buffer...
متن کاملMolecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II.
Ang II receptor activation increases cytosolic Ca2+ levels to enhance the synthesis and secretion of aldosterone, a recently identified early pathogenic stimulus that adversely influences cardiovascular homeostasis. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a downstream effector of the Ang II-elicited signaling cascade that serves as a key intracellular Ca2+ sensor to feedback-reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 40 شماره
صفحات -
تاریخ انتشار 1997